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A general method is outlined to enumerate the edge-colorings of graphs under 
group action. The symmetry group of the graph acting on the vertices induces 
permutation of the edges. The edge-colorings are enumerated using the edge- 
permutation group. A number of chemical applications especially to multiple 
quantum NMR spectroscopy, statistical mechanics, enumeration of unsatur- 
ated isomers, etc. are considered. 
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I. Introduction 

There have been a large number of publications in recent years [1-27] which 
have dealt with applications of combinatorial and graph theoretical techniques 
to many areas o f  chemistry such as quantum chemistry, spectroscopy, statistical 
mechanics, chemical kinetics, drug design and quantum pharmacology. A recent 
review by the present author [1] summarizes the applications of combinatorics 
and graph theory especially to quantum chemistry, spectroscopy and 
stereochemistry. 

A graph is simply a diagram of vertices connected by edges which may represent 
a molecule, hamiltonian operator, statistical mechanical cluster, reaction networks 
in chemical kinetics, NMR interaction diagrams, etc. The vertex colorings of 
graphs, alternatively, enumeration of substituted isomers have been studied quite 
extensively in the chemical literature by many authors [1-5, 13, 14, 28-30]. If  
various colors represent different types of substituents, then the unique vertex 
colorings are the various poly-substituted isomers. The edge-colorings of a graph 
can be defined as the non-equivalent ways one could color the edges of a graph 
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such" that one coloring is not transformable into another coloring by the edge 
group acting on the graph. The formulation of edge-colorings of graphs and their 
chemical applications have not been studied at all by the chemical community. 
The reason is apparent, namely, the applications are somewhat hidden. There 
are, however, a wealth of  information of  chemical and spectroscopic relevance 
that could be derived from such developments as we demonstrate here. 

The edge-colorings of graphs are shown to be useful in multiple quantum NMR 
from which one could obtain various types of dipolar couplings present in a 
molecule. The question then is in how many different ways could one assemble 
these dipolar couplings. Each such way corresponds to a possible structure of 
the unknown compound. The edge-colorings of graphs are shown to enumerate 
unique dipolar interactions among a given set of nuclei thereby providing a 
technique for structure elucidation from NMR. 

The edge-colorings of graphs are also shown to have applications in the enumera- 
tion of unsaturated isomers of a class of organic compounds. They would also 
have applications in statistical mechanics in enumerating the number of statistical 
mechanical diagrams contributing to the configuration integral. Finally, the edge- 
colorings of graphs could enable classification of Kekul6 structures into 
equivalence classes of structures such that all structures in a class have the same 
resonance energy. Section 2 describes preliminaries and formalism of the edge 
group. Section 3 outlines the basic method to enumerate the edge-colorings. 
Section 4 describes applications. 

2. Edge groups 

Let S~ = {vl, /)2 ' " " Vn} be the set of vertices of a graph G and let Se = { e 1 2  �9 �9 �9 eke} 
be the edges of the graph, where e 0 is an edge between the vertices i and j. For 
example, Fig. 1 shows the complete graph containing four vertices. The set S~ 
for this graph is {vl, /)2,  v3, v4} while the set Se for this graph is 
{ e 1 2  , C13 , el4 , e23 , e24 , e 3 4  }.  The adjacency matrix of a graph is defined as 

A~ = ,I vla ifif ii =J.~ j and the ver t ices /and j are connected (1) 

Note that the order of the adjacency matrix is n x n if n is the number of vertices. 
The automorphism group of a graph is defined as the set of permutations of the 
vertices of the graph which leave the connectivity of the graph invariant. Alterna- 
tively, if P is a n x n permutation matrix which corresponds to a permutation of 
the vertices of the graph then P belongs to the automorphism group if 

p - l A p  = A. (2) 

Fig. 1. The complete graph on four vertices (K4) 
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It can be easily verified that all such permutations which leave A invariant form 
a group called the automorphism group of a graph. 

We now define another group induced by the automorphism group which is 
called the edge group. The edge group has been used earlier [30] in enumerating 
edge colorings of graphs. The automorphism group G~ of a graph permutes the 
set of vertices, Sv, of a graph. This in turn induces permutation of the edges as 
follows. Suppose the vertex permutation in G~ is denoted by 

P1 /'2 " "  P .  

where the second row represents the permuted vertices, P1, P2 " �9 �9 Pn being a 
permutation of the integers 1 �9 �9 �9 n. An edge e 0- connecting the vertices i and j 
will become ep,pj under this permutation. The result of the vertex permutation is 
then the following edge permutation of length p (where p is the number of edges), 
shown below. 

( e12 e13 " "  e k t l .  (4) 

ep,p2 ep,p3 �9 . . % p #  

It can be easily shown that the edge permutations form a group. The order of 
the edge group is the same as the order of the vertex automorphism group since 
the two groups are isomorphic except for the K2 graph for which the edge group 
is the identity group while the vertex group is $2. If we denote a group of n! 
permutations acting on n objects by S,, then the automorphism group of a graph 
is a subgroup of Sn, where n is the number of vertices. The edge group, however, 
would be a subgroup of Sp where p is the total number of edges of the graph. 

Let us illustrate the concept of edge group with the example shown in Fig. 1. 
For Fig. 1, the complete graph on four vertices, K4, the automorphism group 
acting on vertices can be easily shown to be the group of 4! permutations. Consider 
for example the vertex permutation (1)(234). The edge permutation induced by 
this vertex permutation is shown below 

( e12 e13 el4 e23 e24 e34 / . (5) 
e13 e14 e12 e34 e23 e24] 

Note that in forming the above permutation we use the fact that the edge e~ is 
the same as eji for a non-directed graph. The above permutation is isomorphic 
with a permutation of six objects shown below. 

( 1 2 2 3 4 5 3  1 6 4 ~) .  (6) 

In cycle notation, the above permutation is denoted by (123)(465) which is a 
member of the group $6. The edge group for K4 then would consist of 4! 
permutations but is a subgroup of $6. It can be shown that every vertex permuta- 
tion in the automorphism group generates a unique edge permutation and thus 
the number of elements in the edge group would be identical to that of the vertex 
automorphism group. 



114 K. Balasubramanian 

3. Edge colorings and their enumeration 

The edge-colorings of a graph are defined as the non-equivalent ways of coloring 
the edges of  a graph with a given set of colors. For example, if we had four white 
colors and two black colors, the graph in Fig. 1 can be colored in two non- 
equivalent ways shown in Fig. 2, where the black color is denoted by a shaded 
edge. The problem of edge colorings can be formulated as follows. 

Let nl be the number of colors of type 1 (black), n2 be the number of colors of 
the type 2 (red), n 3 be the number of colors of the type 3 (blue), etc. An edge 
coloring is defined formally as a mapping f from the set of edges D into the set 
of colors R defined below. 

f :D~R.  (7) 

For example, one of the two colorings shown in Fig. 2 corresponds to the map 
shown below. 

f l : l ~ w  

2 ~ w  

3--~w 
(15) 

4 ~ w  

5 ~ b  

6 ~ b ,  

where w stands for the white color and b stands for the black color. Let F be 
the set of all such possible maps. It can be easily seen that there are IRI I~'~ such 
maps in F. Two functions fl  and f2 are equivalent if there is a permutation g in 
the edge group G such that 

fl(d) =fa(gd) for all d c D. (9) 

The above relation can be easily checked to be an equivalence relation. Two 
functions are equivalent if the corresponding colorings are transformable into 
each other by a member of the edge group. Thus, the above relation divides the 
set F of all functions into equivalence classes. A member from each equivalence 
class then corresponds to a unique edge-coloring. The number of non-equivalent 
edge-colorings is precisely the number of equivalence classes. 

The total number of equivalence classes and the number of non-equivalent 
edge-colorings for a given set of colors can be generated using P61ya's theorem 

Fig. 2. Two non-equivalent ways of coloring the edges of 
K 4 with four colors of one type (white) and two colors of 
another type (black) 
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[28-30]. The general formulation and application of P61ya's theorem to a number 
of chemical problems was reviewed by the present author [1]. 

Let g be a member of the edge group G of the given graph. Suppose g generates 
bl cycles of length 1, b 2 cycles of length 2 �9 �9 �9 bk cycles of length k.  �9 �9 upon 
application of g on the edges of the given graph. Then Xb'X b . . . .  X bk �9 �9 ' is said 
to be a cycle representation of the edge permutation g. The cycle index of the 
edge group G is then defined as 

1 • Xbl'X b . . . .  X~ . . . .  (10) 

To illustrate, the cycle representation of the edge permutation (123)(465) gener- 
ated by the vertex permutation (1)(234) of the g 4 graph (Fig. 1) is x~ (2 cycles 
of length 3). The cycle index of the edge group of the K 4 graph is given by 

1 6 2 2 Pc = ~[x  1 + 9xlxa + 8x~ + 6X~X4]. (11) 

P61ya [28] showed that a generating function for the equivalence classes, which 
for edge-colorings we call the edge-color-inventory (ECI), can be obtained as 
follows. Let wl be'the weight assigned to the color of type 1. Let w2 be assigned 
to color of the type 2, etc. Then the weight of a map f :  D ~ R is defined as the 
product of the weights of the images. Symbolically, 

W ( / ) =  [I w ( f ( d ) ) .  (12) 
d 6 D  

To illustrate the weight of an edge-coloring which contains bl colors of the type 
1, b2 colors of the type 2, etc. is given by 

W ( f )  = wb'wb2 . . . .  W bk " " " (13) 

The edge-color-inventory (ECI) for the given graph is then obtained by P61ya's 
theorem as 

E C I = P ~ ( x k ~  ~r~R ( w ( r ) ) k )  " (14) 

Let us illustrate this procedure with the example of/s (Fig. 1) that we have been 
considering up to now. Let the set R contain just two colors, namely, white and 
black. Let the weight of the white color be w and the corresponding weight for 
the balck color be b. Then the ECI is given by 

ECI = l [ ( w  + b)6 + 9(w + b)2(w 2 + b2)2 + 8(w 3 + b3) 2 + 6(w 2 + b2)(w 4 + b4)]. 

(15) 

The expression (15) upon simplification leads to expression (16). 

ECI = w6+ wSb + 2 w 4 b 2  + 3w3b3  + 2 w 2 b 4  + wb5 + b 6. (16) 

The coefficient of w"lb"2  in ECI gives the number of non-equivalent ways of 
coloring/s with nl white and n2 black colors. Thus, there is one way of coloring 
K4 with six white colors, one way of coloring with five white and one black 
colors, two ways of coloring with four white and two black colors (shown in Fig. 
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Fig. 3. The three edge colorings of K 4 
with three colors of one kind and 
three colors of another kind 

2), three ways of coloring with three white and three black colors, etc. The three 
ways which correspond to the w3b 3 term are shown in Fig. 3 since it is not obvious 
as to what these are. Note that the three shaded edges together constitute the 
possible unique subgraphs on four vertices which contain three edges. 

The above procedure is quite general and powerful in that it can be extended to 
many colors. Consider for example, three types of  colors say green (g), blue (b) 
and red (r). The generating function for the edge-color-inventory for three types 
of colors is obtained by replacing every xk by gk+  bk+ r g in the cycle index of 
the edge group. The resulting expression (17) for three types of  colors is shown 
below. 

~ [ (g  + b + r)6q - 9(g + b + r)2(g2 q - b2q - r2)2q - 8(g3q - b3q - r3) 2 

+6(g2 + b 2q- r2)(g4+ b 4q- r4)]. (17) 

The expression (17) upon simplification results in (18) 

g6 q_ g5 b + 2g4b2 + 3 g3 b 3 q_ 2g2b4 + gb 5 + b 6 q_ g5 r + 2g abr + 4g3 b2r + 4g2b3 r 

+ 2gbar + bSr + 2g4r 2 + 4g3br 2 + 6g2b2r 2 + 4gb 3 r 2 + 2b4r 2 + 3g3r 3 

+4g2br3+4gb2r3+3b3r3+2g2ra+2gbr4+2b2ra+grS+brS+r6.  (18) 

For example, there are six non-equivalent ways of coloring the K4 graph with 
two green, two blue and two red colors. 

Before we proceed with applications, we give one more example. Consider the 
complete graph containing five vertices which is denoted as Ks. For this graph, 
the ECI for two colors is given by (19) 

w 1~ + w9b + 2wSb 2 + 4wTb 3 + 6w6b 4 + 6wSb 5 + 6wab 6 + 4w3b 7 + 2w2b 8 

+ wb9+b 1~ (19) 

4. Applications 

4.1. N M R  and multiple quantum N M R  

We start with the definition of an ordinary N M R  spin hamiltonian. This is 
defined as 

HNMR=E V~I~, + E E JoI, " Is (20) 
i i < j  

where v~ is the chemical shift of  the ith nucleus, J0 is the isotropic spin-spin 
coupling constant between the nuclei i and j, Izi is the z-component  of the nuclear 
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spin vector; I t ' / j  is the scalar product of the spin operators L and/ j .  The present 
author [17] defined the NMR graph of the associated hamiltonian as the diagram 
of nuclei with the edges representing the J-coupling constants. To illustrate, the 
NMR graph of the ethane molecule is shown in Fig. 4. Note that in Fig. 4, the 
edges represent the proton-proton couplings while the vertices are the protons. 
Carbon nuclei are not shown since we consider ~2C-ethane. In Fig. 4, the coupling 
weight r corresponds to the H - H  coupling of the protons on the same carbon 
while r '  corresponds to the H - H  coupling of two protons on two different carbon 
atoms. 

The NMR graph shown in Fig. 4 corresponds to an edge-coloring of the K 6 

graph, namely, a way of coloring the edges of K 6 with six colors of one kind 
and nine colors of another kind. Thus, there is one-to-one correspondence between 
a NMR graph and the edge coloring of a complete graph. There are 21 ways of 
coloring the edges of the K 6 graph with six colors of one kind and nine colors 
of another kind. The NMR graph of ethane corresponds to one of 21 edge- 
colorings of K 6. 

The question of how many different NMR graphs are possible for a given set of 
nuclei and coupling constants is an important and fundamental one since it could 
provide solutions to structure elucidation from NMR. That is, given the distribu- 
tion of coupling constants if one can construct the possible NMR graphs then 
one could arrive at possible structures from the NMR graphs. 

Pines and coworkers [31, 32] have been considering multiple quantum NMR 
spectroscopy in liquid crystals as a tool for molecular structure elucidation. The 
normal NMR spectrum is a 1-quantum spectrum (Zeeman-allowed transitions 
AMF = +1) and is quite complex for a compound containing many nuclei. For 
a molecule containing N-protons, the ( N -  2)-quantum spectrum is considerably 
simpler and yet contains important information on different types of dipolar 
coupling constants. The NMR hamiltonian for dipolar couplings is similar to the 
one defined earlier except that the isotropic J-coupling should be replaced by a 
combination of non-isotropic (oriented) dipolar couplings. The dipolar couplings 
(Do) are more useful since they provide direct information on structures. The 

Fig. 4. The NMR graph of ethane 
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multiple quantum transitions of order greater than eight are difficult to obtain. 
Thus, Gochin and Pines [32] have devised an ingenious way of deutrating the 
compound under consideration thereby eliminating many dipolar couplings and 
reducing the order of the transition. 

The random deuteration of protons would lead to isomers containing fewer 
protons reducing the ( N - 2 )  value for the multiple quantum NMR. Random 
deutration leads to a large number of isomers, in general. The problem then is 
the following. Given the number and types of dipolar couplings and the number 
of proton nuclei could one enumerate the possible NMR graphs so that one 
could assign the observed spectrum to the appropriate isomers? 

The problem of constructing the possible NMR graphs given the dipolar couplings 
can be formulated as follows. Let R be the set of dipolar couplings containing 
nl couplings of the type 1 (D),  n2 couplings of the type 2 (D'),  n3 couplings of 
the type 3 (D"), etc. Let n be the number of protons. Then it can be seen from 
our earlier results and discussions in Sect. 3 that the number of different types 
of NMR graphs is precisely the number of edge-colorings of Kn with the above 
distribution of colors, namely, nx colors of the type 1, n 2 colors of the type 2, 
etc. This is precisely the coefficient of w~'w~ . . . .  in the ECI (edge-color inventory) 
(see the previous section). For the K 6 graph, we show below the ECI for two 
types of colors (white and black) 

W 15 h- wl4b d- 2w13b 2 q- 5 wl2b 3 + 9w 11 b 4 d- 15 wl~ 5 + 21 w9b 6 "}- 24wSb 7 

+ 24wTbS + 21w6b9 +15wSbl~ +9w4bll + 5w3b12 + 2w2b13 + wb14 + b 15. 

(21) 

Thus, there are two NMR graphs containing six nuclei with 13 couplings of one 
kind, two couplings of the other kind (coefficient of w13b2), five graphs with 12 
couplings of one kind, three of the other kind (coefficient of wlZb3), etc. 

4.2. Enumeration of  positional isomers of  unsaturated organic compounds 

A standard problem in organic chemistry is the enumeration of structural isomers 
(positional isomers) of unsaturated compounds. For example, Fig. 5 shows the 
two positional isomers of butadiene (1, 2 and 1, 3). The question of enumerating 
positional isomers of unsaturated compounds reduces to an edge-coloring prob- 
lem. In how many ways could one color a molecular graph with nl colors of the 
type 1 (single bonds), n2 colors of the type 2 (double bonds), n3 colors of the 
type 3 (triple bonds), etc. such that (i) one coloring is not transformable into 
another under the action on the automorphism group of the molecular graph 
and (ii) the tetravalency of the carbon atom is satisfied? The answer to this 
question is a particular case of the formalism outlined in Sect. 3 for unbranched 
compounds containing no fused or spiro rings. 

Fig. 5. The two position isomers of 
_-- : ~. e : - § butadiene 
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Consider a linear chain containing six atoms (Z6). For this graph the cycle index 
of the edge group is given by 

= ~[xl + xlx2]. (22) Pc 1 5 2 

The ECI with two colors would enumerate all possible structures containing 
single and double bonds. If one assigns a symbol s for single bonds and d for 
double bonds, the ECI is given by 

ECI = �89 + d)5 + (s + d)(s  2 + d2) 2] 

= sS+3s4d+6s3d2+6sZd3+3sd4+d 5. (23) 

Thus, there are three hexenes, six hexadienes, six hexatrienes, etc. Thus the 
enumeration of edge-colorings of graphs has important applications to structure 
elucidation. 

The presence of branches or fused or spiro rings in the structure presents a 
problem in that some of the structures enumerated by an ordinary ECI would, 
in fact, violate the tetravalency of the carbon atom. In this case the edge group 
should be applied to a restricted set of functions representing the colorings which 
do not violate the carbon tetravalency. This can be accomplished using the 
principle of inclusion and exclusion as shown by the present author [4, 34] in 
an earlier publication on the enumeration of polysubstituted alcohols. However, 
in using such methods, one loses the analytical simplicity present in the previous 
example and there are no closed analytical expressions, in general. 

4.3. Applications to statistical mechanics 

The classical formulation of the canonical partition functions involves a classical 
configuration integral denoted by QN [33], where N is the number of particles. 
The 3N-dimentional integral QN can be written as 

oN=f'''fe-~"d~'~'''d~'N, (24) 

where U is the total potential term which can be expressed as a sum of  pairwise 
interaction terms as follows 

U =2 • u(ro). (25) 
i<j 

The configuration integral QN can be written in terms of the Mayer function f 
defined below as, 

f j  = e r (26) 

Q N = f ' ' ' f d ~ ' i ' ' ' d ' r N { l + 2 f i j + 2 f o f k , + ' ' ' } .  (27) 

A graph theoretical expansion of QN can be obtained by representing each of 
the above integrals by a labelled graph containing N points such that if a factor 
f j  is present in the integral then the vertices labelled i and j are connected. Such 
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a graph can be called a statistical interaction diagram. The contributions of two 
integrals to QN are the same if the topological structures of the associated graphs 
are the same. Thus, the number of inequivalent ways of labelling an unlabelled 
graph and the number of "different" graphs on N points can yield an expansion 
for QN. To illustrate the expansion for Q3 is shown below: 

Q3 = .  " . + 3 ( /  , ) + 3 ( / _  - ) + ~ _  (28) 

The enumeration of "different" graphs on a set of N points can be formulated 
in terms of edge colorings of a complete graph KN as follows. If one assigns a 
weight w if there is an edge and a weight 1 if there is no edge, then the ECI 
enumerates the number of different graphs on N vertices For example, the ECI 
for K4 and K 6 a re  given by (29) and (30), respectively. 

ECI(K4) = 1 + w+2w2+ 3w3+2w4+ wS+ w 6 (29) 

ECI(K6) = 1 + w + 2 w Z + 5 w 3 + 9 w 4 +  15wS+21w6+24wV+24w 8 

+ 2 1 W 9 +  15w1~ 9wll +5wlZ+2w13+ WI4+ W 15, (30) 

Thus, there is one graph which contains one edge and four vertices (coefficient 
of w in (29)), two graphs containing two edges (coefficient of w2), three graphs 
containing three edges (coefficient of w3), etc. In general, the coefficients of w k 

in expressions (29) and (30) enumerate number of different graphs containing k 
edges and N vertices for N = 4 and 6, respectively. All graphs containing four 
vertices are also enumerated in [30] and are shown in Fig. 6. Once all graphs 
containing N vertices have been enumerated, the next step would be to find the 
"weighting factor" for that graph which is simply the number of different ways 
to label the graph. This number is given by 

N! 
n - (31) 

IGI 

where I GI is the number of elements in the vertex automorphism group of the 
graph. To illustrate, the weight factor for the fourth graph in Fig. 6 is three since 
the automorphism group of this graph is the wreath product $2[$2] whose order 

Fig. 6. The eleven non-equivalent graphs containing four vertices. These enumerated by expressions 
(28) 
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is 2.22. Thus f~ is 4!/8 = 3. The final graph theoretical  expans ion  for Q4 is thus 

given by (32) which agrees with the result ob ta ined  in [33] 

. . . . . .  i, Q4 = +6 (  ) + 3 (  ) + 1  + 4  + 4  

+12(I I,-3 i 
It should be poin ted  out that further simplif ication in the final evaluat ion  of the 
canonica l  par t i t ion func t ion  and  the virial coefficients is achieved if one enumer-  
ates a subset  o f  all the graphs on N points  called the Mayer  graphs. Mayer  

graphs or i r reducible cluster graphs ( irreducible cluster integrals) are connected 

graphs on N vertices with no cut vertex or an ar t iculat ion point .  A cut vertex is 

a vertex in a graph which leaves the graph disconnected  if it is removed from 

the graph. The last three graphs in Fig. 4 are the only three Mayer  cluster graphs 
on four vertices. 

5. Conclusion 

In  this invest igat ion,  we formulated a group called the edge group of a graph. 

The enumera t ion  of the edge colorings of a graph was outl ined.  It was shown 

that edge colorings of graphs have several impor tan t  appl icat ions  in ordinary  

N M R ,  mult iple  q u a n t u m  N M R ,  enumera t ion  of posi t ional  isomers of unsa tura ted  

compounds  and  the enumera t ion  of i rreducible clusters in statistical mechanics.  
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